Data Mining, Data ware Housing

Introduction

 Data mining refers loosely to the process of semi automatically analyzing large data bases to find useful patterns Data ware house is a repository of information gathered from multiple sources, stored under a unified schema, at a single site

Applications

- Multimedia Data Mining
- Mining Raster Databases
- Mining Associations in Multimedia Data
- Audio and Video Data Mining
- Text Mining
- Mining the World Wide Web

Scope of research

- In data mining we can design Data Mining Models.
- Can develop data mining algorithms.
- Add privacy and security features in data mining.
- Scaling up for high dimensional data and high speed data streams.

Data Analysis and Mining

- Decision Support Systems
- Data Analysis and OLAP
- Data Warehousing
- Data Mining

Decision Support Systems

- Decision-support systems are used to make business decisions, often based on data collected by on-line transaction-processing systems.
- Examples of business decisions:
 - What items to stock?
 - What insurance premium to change?
 - To whom to send advertisements?
- Examples of data used for making decisions
 - Retail sales transaction details
 - Customer profiles (income, age, gender, etc.)

Decision-Support Systems: Overview

- Data analysis tasks are simplified by specialized tools and SQL extensions
 - Example tasks
 - For each product category and each region, what were the total sales in the last quarter and how do they compare with the same quarter last year
 - As above, for each product category and each customer category
- Statistical analysis packages (e.g., : S++) can be interfaced with databases
 - Statistical analysis is a large field, but not covered here
- Data mining seeks to discover knowledge automatically in the form of statistical rules and patterns from large databases.
- A data warehouse archives information gathered from multiple sources, and stores it under a unified schema, at a single site.
 - Important for large businesses that generate data from multiple divisions, possibly at multiple sites
 - Data may also be purchased externally

Data Analysis and OLAP

- Online Analytical Processing (OLAP)
 - Interactive analysis of data, allowing data to be summarized and viewed in different ways in an online fashion (with negligible delay)
- Data that can be modeled as dimension attributes and measure attributes are called multidimensional data.
 - Measure attributes
 - measure some value
 - can be aggregated upon
 - e.g. the attribute *number* of the *sales* relation
 - Dimension attributes
 - define the dimensions on which measure attributes (or aggregates thereof) are viewed
 - e.g. the attributes *item_name, color,* and *size* of the *sales* relation

Cross Tabulation of *sales* by *ite<u>m-name</u> and <i>color*

size: all					
	color				
item-name		dark	pastel	white	Total
	skirt	8	35	10	53
	dress	20	10	5	35
	shirt	14	7	28	49
	pant	20	2	5	27
	Total	62	54	48	164

- The table above is an example of a cross-tabulation (cross-tab), also referred to as a pivot-table.
 - Values for one of the dimension attributes form the row headers
 - Values for another dimension attribute form the column headers
 - Other dimension attributes are listed on top
 - Values in individual cells are (aggregates of) the values of the dimension attributes that specify the cell.

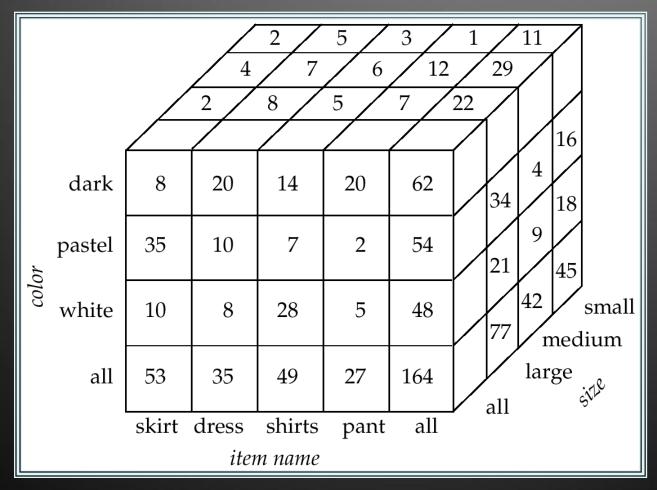
Cross-tabs

- n Cross-tabs can be represented as relations
 - n We use the value **all** is used to represent aggregates
 - n The SQL:1999 standard actually uses null values in place of **all** despite confusion with regular null values

item-name	color	number
skirt	dark	8
skirt	pastel	35
skirt	white	10
skirt	all	53
dress	dark	20
dress	pastel	10
dress	white	5
dress	all	35
shirt	dark	14
shirt	pastel	7
shirt	white	28
shirt	all	49
pant	dark	20
pant	pastel	2
pant	white	5
pant	all	27
all	dark	62
all	pastel	54
all	white	48
all	all	164

Data Cube

- n A data cube is a multidimensional generalization of a cross-tab
- n Can have *n* dimensions; we show 3 below
- n Cross-tabs can be used as views on a data cube

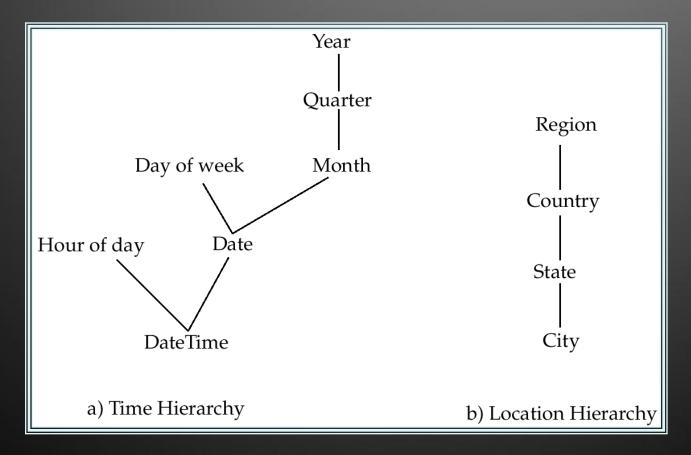


Online Analytical Processing

- Pivoting: changing the dimensions used in a cross-tab is called
- Slicing: creating a cross-tab for fixed values only
 - Sometimes called dicing, particularly when values for multiple dimensions are fixed.
- Rollup: moving from finer-granularity data to a coarser granularity
- Drill down: The opposite operation that of moving from coarser-granularity data to finergranularity data

Hierarchies on Dimensions

- n **Hierarchy** on dimension attributes: lets dimensions to be viewed at different levels of detail
 - H E.g. the dimension DateTime can be used to aggregate by hour of day, date, day of week, month, quarter or year



Hierarchy

- n Cross-tabs can be easily extended to deal with hierarchies
 H Can drill down or roll up on a hierarchy
- category item-name dark pastel white total skirt womenswear dress subtotal pants menswear shirt subtotal total

OLAP Implementation

- The earliest OLAP systems used multidimensional arrays in memory to store data cubes, and are referred to as multidimensional OLAP (MOLAP) systems.
- OLAP implementations using only relational database features are called relational OLAP (ROLAP) systems
- Hybrid systems, which store some summaries in memory and store the base data and other summaries in a relational database, are called hybrid OLAP (HOLAP) systems.

OLAP Implementation (Cont.)

- Early OLAP systems precomputed *all* possible aggregates in order to provide online response
 - Space and time requirements for doing so can be very high
 - 2ⁿ combinations of group by
 - It suffices to precompute some aggregates, and compute others on demand from one of the precomputed aggregates
 - Can compute aggregate on (*item-name, color*) from an aggregate on (*item-name, color, size*)
 - For all but a few "non-decomposable" aggregates such as median
 - is cheaper than computing it from scratch
- Several optimizations available for computing multiple aggregates
 - Can compute aggregate on (*item-name, color*) from an aggregate on

(*item-name*, *color*, *size*)

 Can compute aggregates on (*item-name, color, size*), (*item-name, color*) and (*item-name*) using a single sorting of the base data

Extended Aggregation in

The cube operator of mputes union of group by's on every subset of the specified attributes

• E.g. consider the query

select item-name, color, size, sum(number)
from sales
group by cube(item-name, color, size)

This computes the union of eight different groupings of the *sales* relation:

{ (*item-name, color, size*), (*item-name, color*), (*item-name, size*), (*color, size*), (*item-name*), (*color*), (*size*), () }

where () denotes an empty group by list.

For each grouping, the result contains the null value for attributes not present in the grouping.

Extended Aggregation (Cont.) Relational representation of cross tab that we saw earlier, but with

null in place of **all**, can be computed by

select item-name, color, sum(number)
from sales
group by cube(item-name, color)

- The function **grouping()** can be applied on an attribute
 - Returns 1 if the value is a null value representing all, and returns 0 in all other cases.
 - select item-name, color, size, sum(number),
 grouping(item-name) as item-name-flag,

grouping(color) as color-flag,

grouping(size) as size-flag,

from sales

group by cube(item-name, color, size)

- Can use the function decode() in the select clause to replace such nulls by a value such as all
 - E.g. replace *item-name* in first query by decode(grouping(item-name), 1, 'all', *item-name*)

Extended Aggregation (Cont.) The rollup construct generates union on every prefix of specified

list of attributes

E.g.

select item-name, color, size, sum(number)
from sales
group by rollup(item-name, color, size)
Generates union of four groupings:

{ (item-name, color, size), (item-name, color), (item-name), (
) }

- Rollup can be used to generate aggregates at multiple levels of a hierarchy.
- E.g., suppose table *itemcategory*(*item-name, category*) gives the category of each item. Then

select category, item-name, sum(number)
from sales, itemcategory
where sales.item-name = itemcategory.item-name
group by rollup(category, item-name)

would give a hierarchical summary by *item-name* and by *category*.

Ranking is done in conjunction with an order by specification.

Given a relation student-marks(student-id, marks) find the rank of each student.

select student-id, rank() over (order by marks desc) as s-rank
from student-marks

- An extra order by clause is needed to get them in sorted order select student-id, rank () over (order by marks desc) as s-rank from student-marks order by s-rank
- Ranking may leave gaps: e.g. if 2 students have the same top mark, both have rank 1, and the next rank is 3
 - **dense_rank** does not leave gaps, so next dense rank would be 2

Ranking (Cont.)

- Ranking can be done within partition of the data.
- "Find the rank of students within each section."
 select student-id, section,
 rank () over (partition by section order by marks desc)
 as sec-rank
 from student-marks, student-section
 where student-marks.student-id = student-section.student-id
 order by section, sec-rank
- Multiple rank clauses can occur in a single select clause
- Ranking is done *after* applying **group by** clause/aggregation

Ranking (Cont.)

- Other ranking functions:
 - **percent_rank** (within partition, if partitioning is done)
 - **cume_dist** (cumulative distribution)
 - fraction of tuples with preceding values
 - **row_number** (non-deterministic in presence of duplicates)
- SQL:1999 permits the user to specify nulls first or nulls last select student-id,

rank () over (order by *marks* desc nulls last) as *s-rank* from *student-marks*

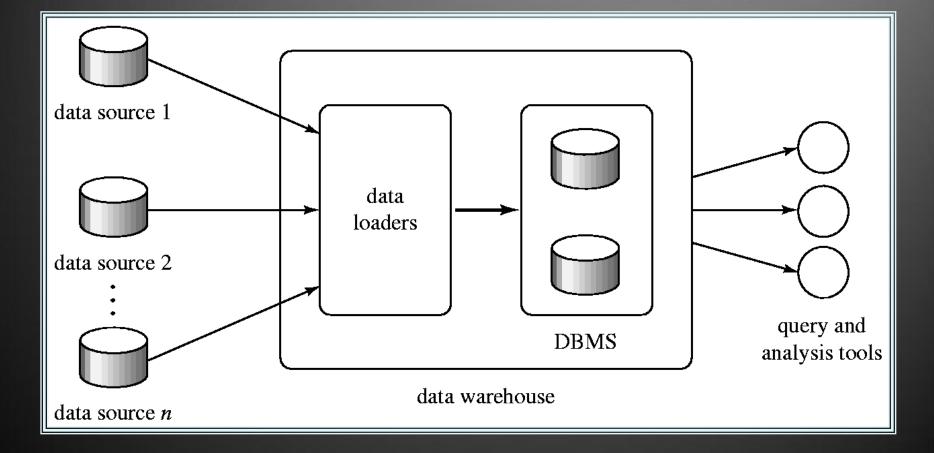
Ranking (Cont.)

- For a given constant *n*, the ranking the function *ntile(n)* takes the tuples in each partition in the specified order, and divides them into *n* buckets with equal numbers of tuples.
- E.g.:

select threetile, sum(salary)
from (

select salary, ntile(3) over (order by salary) as threetile
from employee) as s
group by threetile

Data Warehousing



Design Issues

When and how to gather data

- Source driven architecture: data sources transmit new information to warehouse, either continuously or periodically (e.g. at night)
- Destination driven architecture: warehouse periodically requests new information from data sources
- Keeping warehouse exactly synchronized with data sources (e.g. using two-phase commit) is too expensive
 - Usually OK to have slightly out-of-date data at warehouse
 - Data/updates are periodically downloaded form online transaction processing (OLTP) systems.
- What schema to use
 - Schema integration

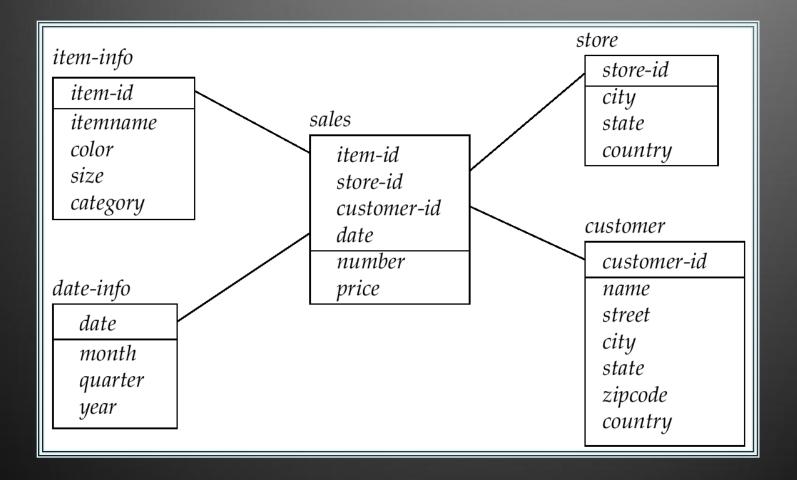
More Warehouse Design Issues

- Data cleansing
 - E.g. correct mistakes in addresses (misspellings, zip code errors)
 - Merge address lists from different sources and purge duplicates
- How to propagate updates
 - Warehouse schema may be a (materialized) view of schema from data sources
- What data to summarize
 - Raw data may be too large to store on-line
 - Aggregate values (totals/subtotals) often suffice
 - Queries on raw data can often be transformed by query optimizer to use aggregate values

Warehouse Schemas

- Dimension values are usually encoded using small integers and mapped to full values via dimension tables
- Resultant schema is called a star schema
 - More complicated schema structures
 - Snowflake schema: multiple levels of dimension tables
 - Constellation: multiple fact tables

Data Warehouse Schema



Data Mining is the proce

- Data mining is the process of semi-automatically analyzing large databases to find useful patterns
- Prediction based on past history
 - Predict if a credit card applicant poses a good credit risk, based on some attributes (income, job type, age, ..) and past history
 - Predict if a pattern of phone calling card usage is likely to be fraudulent
- Some examples of prediction mechanisms:
 - Classification
 - Given a new item whose class is unknown, predict to which class it belongs
 - Regression formulae
 - Given a set of mappings for an unknown function, predict the function result for a new parameter value

Data Mining (Cont.)

Descriptive Patterns

- Associations
 - Find books that are often bought by "similar" customers. If a new such customer buys one such book, suggest the others too.
- Associations may be used as a first step in detecting causation
 - E.g. association between exposure to chemical X and cancer,
- Clusters
 - E.g. typhoid cases were clustered in an area surrounding a contaminated well
 - Detection of clusters remains important in detecting epidemics

Classification Rules

Classification rules help assign new objects to classes.

- E.g., given a new automobile insurance applicant, should he or she be classified as low risk, medium risk or high risk?
- Classification rules for above example could use a variety of data, such as educational level, salary, age, etc.
 - ∀ person P, P.degree = masters and P.income > 75,000

 \Rightarrow P.credit =

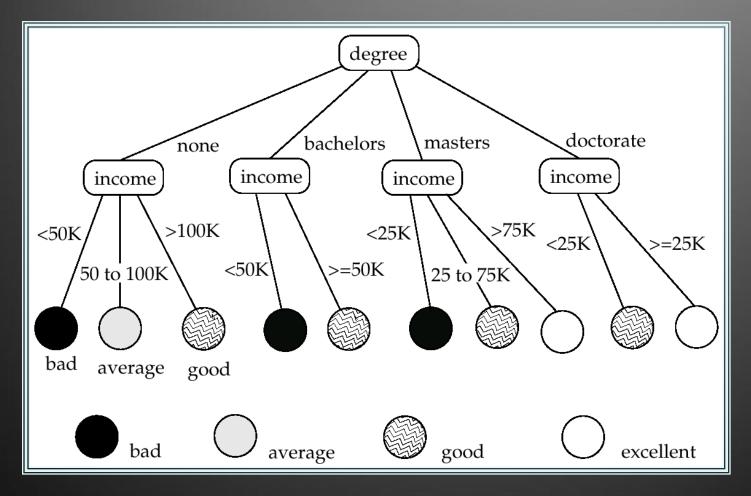
excellent

 v person P, P.degree = bachelors and (P.income ≥ 25,000 and P.income ≤ 75,000) ⇒ P.credit =

good

- Rules are not necessarily exact: there may be some misclassifications
- Classification rules can be shown compactly as a decision tree.

Decision Tree



Construction of Decision Trees

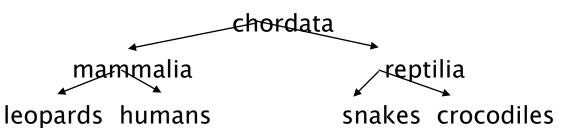
- Training set: a data sample in which the classification is already known.
- **Greedy** top down generation of decision trees.
 - Each internal node of the tree partitions the data into groups based on a partitioning attribute, and a partitioning condition for the node
 - Leaf node:
 - all (or most) of the items at the node belong to the same class, or
 - all attributes have been considered, and no further partitioning is possible.

Clustering

- Clustering: Intuitively, finding clusters of points in the given data such that similar points lie in the same cluster
- Can be formalized using distance metrics in several ways
 - Group points into k sets (for a given k) such that the average distance of points from the centroid of their assigned group is minimized
 - Centroid: point defined by taking average of coordinates in each dimension.
 - Another metric: minimize average distance between every pair of points in a cluster
- Has been studied extensively in statistics, but on small data sets
 - Data mining systems aim at clustering techniques that can handle very large data sets
 - E.g. the Birch clustering algorithm (more shortly)

Hierarchical Clustering • Example from biological classification

 (the word classification here does not mean a prediction mechanism)



- Other examples: Internet directory systems (e.g. Yahoo, more on this later)
- Agglomerative clustering algorithms
 - Build small clusters, then cluster small clusters into bigger clusters, and so on
- Divisive clustering algorithms
 - Start with all items in a single cluster, repeatedly refine (break) clusters into smaller ones

Clustering Algorithms

- Clustering algorithms have been designed to handle very large datasets
- E.g. the Birch algorithm
 - Main idea: use an in-memory R-tree to store points that are being clustered
 - Insert points one at a time into the R-tree, merging a new point with an existing cluster if is less than some δ distance away
 - If there are more leaf nodes than fit in memory, merge existing clusters that are close to each other
 - At the end of first pass we get a large number of clusters at the leaves of the R-tree
 - Merge clusters to reduce the number of clusters

Collaborative Filtering

- Goal: predict what movies/books/... a person may be interested in, on the basis of
 - Past preferences of the person
 - Other people with similar past preferences
 - The preferences of such people for a new movie/book/...
- One approach based on repeated clustering
 - Cluster people on the basis of preferences for movies
 - Then cluster movies on the basis of being liked by the same clusters of people
 - Again cluster people based on their preferences for (the newly created clusters of) movies
 - Repeat above till equilibrium
- Above problem is an instance of collaborative filtering, where users collaborate in the task of filtering information to find information of interest

Other Types of Mining

- Text mining: application of data mining to textual documents
 - cluster Web pages to find related pages
 - cluster pages a user has visited to organize their visit history
 - classify Web pages automatically into a Web directory
- Data visualization systems help users examine large volumes of data and detect patterns visually
 - Can visually encode large amounts of information on a single screen
 - Humans are very good a detecting visual patterns